Different redox states of metallothionein/thionein in biological tissue.

نویسندگان

  • Artur Krezel
  • Wolfgang Maret
چکیده

Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular zinc and redox states converge in the metallothionein/thionein pair.

The paramount importance of zinc for a wide range of biological functions is based on its occurrence in thousands of known zinc proteins. To regulate the availability of zinc dynamically, eukaryotes have compartmentalized zinc and the metallothionein/thionein pair, which controls the pico- to nanomolar concentrations of metabolically active cellular zinc. Interactions of zinc with sulfur ligand...

متن کامل

Control of zinc transfer between thionein, metallothionein, and zinc proteins.

Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 x 10(13) M-1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions-i.e., from the enzymes to thionein (the apoform of MT) and from ...

متن کامل

Differential fluorescence labeling of cysteinyl clusters uncovers high tissue levels of thionein.

The isolation of thionein (T) from tissues has not been reported heretofore. T contains 20 cysteinyl residues that react with 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide to form fluorescent adducts. In metallothionein (MT) the cysteinyl residues, which are bound to zinc, do not react. However, they do react in the presence of a chelating agent such as EDTA. The resultant difference in chemical...

متن کامل

Simultaneous Determination of Metallothionein and Thionein

Metallothionein (MT) has a dynamic role in cellular zinc metabolism. In order to determine the apoprotein thionein (T), an assay was developed. With this method tissue homogenates were treated with subtilisin to digest any T that might exist but MT could not be digested by subtilisin. MT was detected by cadmium-hemoglobin saturation method and T was determined as the difference of MT between sa...

متن کامل

Metallothionein synthesis and degradation: relationship to cadmium metabolism.

Metallothionein is an integral component of the mechanism that regulates the metabolism of cadmium and zinc. The synthesis of this protein can be "induced" by oral or parenteral administration of either metal. The metallothionein mRNA content of liver polysomes is increased shortly after an influx of small amounts of either metal into hepatocytes. After sufficient amounts of this poly (A+) RNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 402 3  شماره 

صفحات  -

تاریخ انتشار 2007